

Dokumentation

zum

On Board

Diagnose

Stecker

OBD

INHALTSVERZEICHNIS

1	EINLEITUNG		3			
2	BE	STELLUNTERLAGEN	4			
3	AU	FBAU	6			
	3.1	Blockschaltbild	6			
	3.2	Signalbeschreibung	7			
	3.3	Schaltplan	8			
	3.4	Layout	9			
4	VEI	RDRAHTUNG	11			
	4.1	Platine am OBD - Stecker und Serieller Schnittstelle	11			
5	5 HINWEISE FÜR DEN BETRIEB 12					
6	6 TREIBERPROGRAMME FÜR EDIABAS 12					
	6.1	Allgemeines, INI-Datei	12			
	6.2	Installation	13			
	6.3	WINDOWS 95 / 98 / ME	14			
	6.4	WINDOWS NT 4.0 / 2000 / XP	14			

1 Einleitung

Der On Board Diagnose Stecker (OBD) dient als Pegelwandler von einer V.24-Schnittstelle (RS-232-C) zur Diagnoseschnittstelle im Fahrzeug.

Die Kommunikationsfunktionen und Schalt-/Statusfunktionen werden über die Status- und Datenleitungen der V.24-Schnittstelle realisiert. Die Treibersoftware unterstützt die in PC's standardmäßig vorhandenen seriellen Schnittstellen unter WINDOWS 95 / 98 / ME und WINDOWS NT 4.01 / 2000 / XP.

Unterstützt werden

- Diagnoseleitungen gemäß DS2, KWP2000*, K-Bus, BMW Fast2, KWP2000
- Gesteuerte Umschaltung des Pullup Widerstandes bei BMW Fast
- Erfassung des Status von Klemme 15 (Zündung) und Klemme 30 (Dauerplus)

-

 $^{^{1}}$ WINDOWS ist eingetragenes Warenzeichen der MICROSOFT GmbH

 $^{^2}$ DS2, KWP2000*, K-Bus, BMW Fast sind standardisierte Diagnoseprotokolle der BMW AG

2 Bestellunterlagen

Bestellungen externer Bedarfsträger nur mit Bestätigung des BMW-Ansprechpartner über Stückzahl und Verwendungszweck.

Lieferant: Fa.Cartool

Straussenlettenstr. 15 85053 Ingolstadt

Telefon: 0841 / 96500-40 Fax: 0841 / 96500-90

Ansprechpartner: Herr Kraus

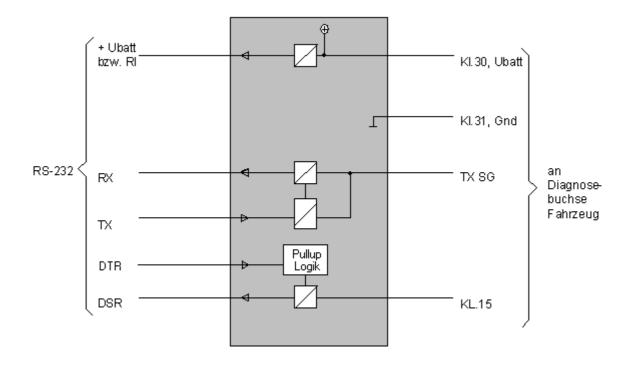
Lieferanten Nr.: 117 030.10 Rahmenauftrag Nr. 2 694 411

Bitte beachten Sie die folgenden Lieferzeitvereinbarungen:

Bis 50 Stück OBD-Diagnosekabel innerhalb von 21 Tagen nach Abruf

Bis 500 Stück OBD-Diagnosekabel bis zu 8 Wochen Ab 500 Stück OBD- Diagnosekabel bis zu 10 Wochen

Bezeichnung	Artikel Nr.	Kabellänge	Menge	Preis
On Board Diagnosestecker Werksausführung mit Federkontakten BMW FM-Nr. 5 257 913 B7 Position 2	99 8 941	3,5 Meter	1 Stück	184,73 €
On Board Diagnosestecker Werksausführung mit Federkontakten BMW FM-Nr. 5 257 913 B7 Position 1	99 8 942	7,5 Meter	1 Stück	190,57 €
On Board Diagnosestecker Standardausführung mit Flachkontakten	99 8 943	3,5 Meter	1 Stück	103,28 €
On Board Diagnosestecker Standardausführung mit Flachkontakten	99 8 944	7,5 Meter	1 Stück	112,74€


Ersatzteile:

Leiterplatte passend für 99 8 941 und 99 8 942 BMW FM-Nr. 5 257 913 B7 Position 38	99 8 940		1 Stück	68,56€
Leiterplatte passend für 99 8 943 und 99 8 944	99 8 949		1 Stück	68,56€
OBD-Stecker komplett Werksausführung mit Federkontakten (ohne Elektronik) BMW FM-Nr. 5 257 913 B7 Position 5	99 8 945		1 Stück	99,85 €
OBD-Stecker (nur Federkontaktteil) Werksausführung mit Federkontakten	99 8 946		1 Stück	63,70€
Mantelleitung für 99 8 941 und 99 8 943 BMW FM-Nr. 5 257 913 B7 Position 11	99 8 947	3,5 Meter	1 Stück	31,21€
Mantelleitung für 99 8 942 und 99 8 944 BMW FM-Nr. 5 257 913 B7 Position 10	99 8 948	7,5 Meter	1 Stück	37,06€

3 Aufbau

3.1 Blockschaltbild

3.2 Signalbeschreibung

Bei RS-232-C gelten deren genormte Pegel, außer für RI. Nachstehend werden die Pegel jeweils als +12V (stellvertretend für den Bereich von +3...+15V) oder -12V (stellvertretend für den Bereich von -3...-15V) angegeben.

RX Empfang vom Steuergerät;

TX Senden an Steuergerät;

DTR Steuerleitung für Umschaltung Pullup

DTR = -12V: 1000 Ω DTR = +12V: 500 Ω

DSR Lesen Status Kl.15;

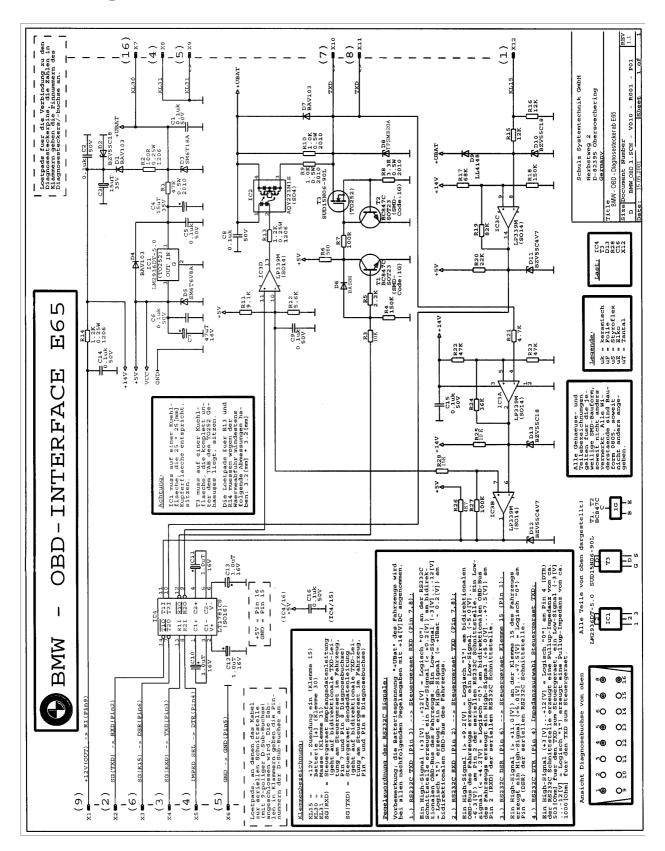
DSR = -12V, Kl.15 = AUSDSR = +12V, Kl.15 = EIN

Signal ist nur gültig, wenn Ubatt $\geq 8,5V$ ist, da erst ab dieser Versorgung die Schaltung betriebsfähig ist. (Timingwerte beziehen sich jedoch auf eine nominale Versorgung von Ubatt = 12V)

RI Status Kl.30 lesen

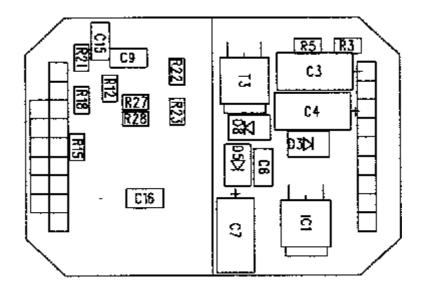
Bei Pegel RI = +3V ... +15V wird Kl.30 EIN und RI = TRUE (logisch "1") erkannt. Bei Pegel RI < 3V ist RI = FALSE (logisch "0")

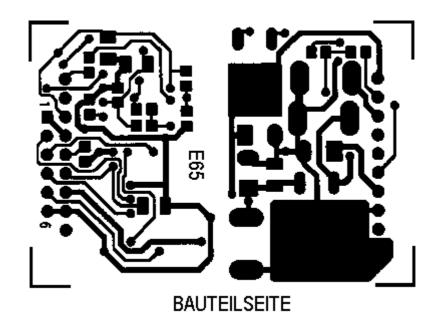
Schaltschwellen


Bei RS-232 gelten die genormten Pegel (-3V...-15V bzw. +3V ... +15V), ausgenommen RI: s.o. Auf der Fahrzeugseite: Schaltschwelle für Kl.15 ist Ubatt:

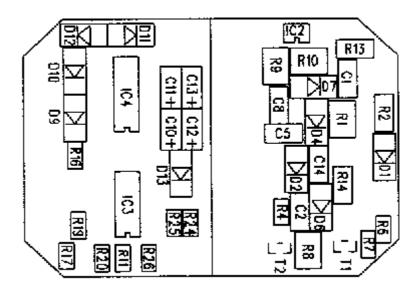
 $UL \le 0.3 \text{ Ubatt}$ $UH \ge 0.7 \text{ Ubatt}$

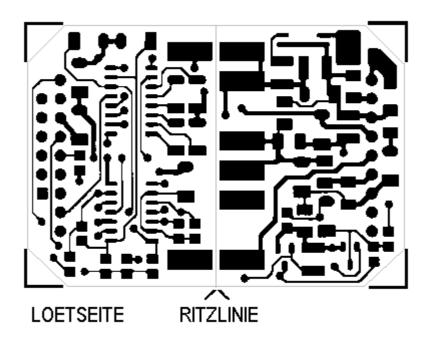
Pegel und Beschaltung RXSG und TXSG nach Lastenheft Codierung/Diagnose


3.3 Schaltplan

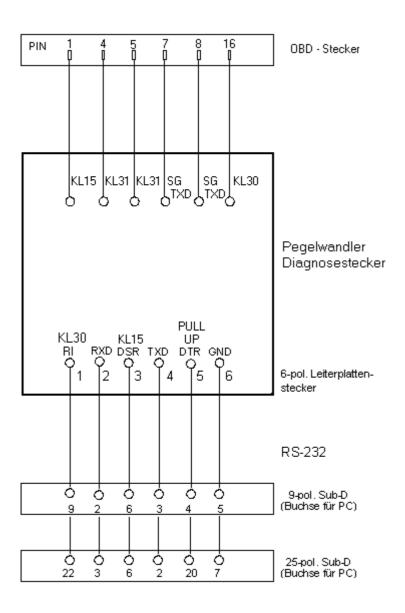


3.4 Layout


Bauteilseite:



Lötseite:



4 Verdrahtung

4.1 Platine am OBD - Stecker und Serieller Schnittstelle

5 Hinweise für den Betrieb

Anschlussreihenfolge für OBD bei Betrieb an einem Rechner:

Zuerst am Rechner und dann am Fahrzeug anschließen.

Wegen Ableitung statischer Aufladung über voreilende Massepins (Pin4 und Pin5 am OBD-Stecker)

6 Treiberprogramme für EDIABAS

6.1 Allgemeines, INI-Datei

Die Treiberprogramme zur Anbindung an EDIABAS erwarten den OBD-Stecker an der COM1. In der INI-Datei EDIABAS.INI muss Interface = STD:OBD eingetragen sein.

Hinweise zur Parametrierung der Steuergerätebeschreibungsdatei (SGBD). Auflösung der Zeitwerte bei WINDOWS 1 ms.

Über eine INI-Datei OBD.INI im **Windows-Verzeichnis** können verschiedene Einstellungen geändert werden.

[OBD]

Port = Com1

Einstellen der seriellen Schnittstelle COM 1 .. COM9

TRACELEVEL = 0

;Nur für interne Fehlersuche 0=aus 0x00000000 .. 0xFFFFFFF

RETRY = OFF

;Wiederholung im Fehlerfall, wird von EDIABAS bereits gemacht, sollte deshalb aus sein.

OFF, ON

MODE=NORMAL

;Bei KBUS werden DS2-Telegramme in K-Bus-Telegramme umgewandelt.

;Kommunikation nur am einzelnen DS2-Steuergerät am K-Bus zulässig.

NORMAL, KBUS

HARDWARE=OBD

;OBD-Stecker OBD ;OBD-Stecker am USB->Seriell-Adapter USB ;Alte ADS-Hardware ADS

Für den Mehrkanalbetrieb unter EDIABAS werden die einzelnen UNITs über eine entsprechende Sektion eingestellt. Die Einträge aus der Sektion [OBD] werden als default-Werte übernommen. Es müssen also nur die Werte angegeben werden, die sich ändern.

EDIABAS-Auruf: apiInitExt("STD:OBD","x","") wobei das eine Zeichen x die UNIT angibt.

[UNIT_x]	x = A, B,, Y, Z, 0, 1,, 8,9
Port = Com1	COM 1 COM9
TRACELEVEL = 0x000000000	0x00000000 0xFFFFFFF
RETRY = OFF	OFF, ON
MODE=NORMAL	NORMAL, KBUS
HARDWARE=OBD	OBD, USB, ADS

6.2 Installation

Für WINDOWS 95 / 98 / ME ist keine Installation nötig. Der Treiber ist sofort betriebsbereit. Eine Installation ist nur unter WINDOWS NT 4.0 / 2000 / XP nötig.

Pfad des Installationsprogramms: \EDIABAS\HARDWARE\OBD\OBDSETUP.EXE

Mit dem Installationsprogramm OBDSETUP.EXE wird der Registry -Eintrag für die serielle Schnittstelle eingestellt.

Dazu muss man sich als Administrator am PC anmelden, und das Programm mit dem Explorer aufrufen.

Nach Ausführen des Programms erscheint die Meldung:

```
🎖 Eingabeaufforderung - obdsetup
Windows NT Version 4.0
Installing OBD driver...
SubKey 'SYSTEM\CurrentControlSet\Services\Serial' allready exist !
Reading values of the key ...
Value Type
                 = 1
                                    Expected = 1
                                                            0k
Value Start
                   = 2
                                    Expected = 2
                                                            0k
Value Group
                  0k
Value ErrorControl = 0
                                    Expected = 0
                                                            0k
Value Tag
                    = 1
                                    Expected = 1
                                                            0k
Value ForceFifoEnable = 1
                                    Expected = 1
                                                            0k
Value RxFIFO = 8
                                    Expected = 8
                                                            0k
                    = 1
Value TxFIF0
                                    Expected = 8
                                                            Changed
                    = 0
                                    Expected = 0
Value PermitShare
                                                            0k
Value LogFifo
                    = 0
                                    Expected = 0
                                                            0k
Value ShareInterrupt = 0
                                    Expected = 0
                                                            0k
Some values have been changed
Please reboot the machine now ...
Press any key to continue ...
```

Für die vollständige Installation sollte nun der PC komplett neu gestartet werden. Eine Neuanmeldung als Benutzer reicht dazu nicht.

6.3 WINDOWS 95 / 98 / ME

Mit dem ersten EDIABAS-Aufruf des eigenen 16-Bit-Programms über die API.DLL wird automatisch

EDIABASW.EXE EDIABAS-Laufzeitsystem für Windows 16-Bit

XSTD.DLL Standard-Interface-Handler OBD.DLL Umsetzen auf OBD32.DLL OBD32.DLL Protokolltreiber für OBD

geladen.

Mit dem ersten EDIABAS-Aufruf des eigenen 32-Bit-Programms über die API32.DLL wird automatisch

EBAS32.EXE EDIABAS-Laufzeitsystem für Windows 32-Bit

XSTD32.DLL Interface-Handler für OBD OBD32.DLL Protokolltreiber für OBD

geladen.

Nach Beenden des eigenen Programms verbleibt EDIABAS im Speicher um bei erneutem Start eines EDIABAS-Programmes die Ladezeiten kurz zu halten. EDIABAS muß nicht zwingend geschlossen werden. Es ist jedoch jederzeit möglich.

6.4 WINDOWS NT 4.0 / 2000 / XP

Unter WINDOWS NT 4.0 / 2000 / XP wird nur EDIABAS 32-Bit unterstützt. Ein 16-Bit-Betrieb mit dem OBD ist nicht möglich.

Mit dem ersten EDIABAS-Aufruf des eigenen 16-Bit-Programms über die API.DLL wird automatisch auf die API32.DLL umgesetzt.

Mit dem ersten EDIABAS-Aufruf des eigenen 32-Bit-Programms über die API32.DLL wird automatisch

EBAS32.EXE EDIABAS-Laufzeitsystem für Windows 32-Bit

XSTD32.DLL Interface-Handler für OBD OBD32.DLL Protokolltreiber für OBD

geladen.

Nach Beenden des eigenen Programms verbleibt EDIABAS im Speicher um bei erneutem Start eines EDIABAS-Programmes die Ladezeiten kurz zu halten. EDIABAS muss nicht zwingend geschlossen werden. Es ist jedoch jederzeit möglich.